p-ADIC VARIATION OF L FUNCTIONS OF ONE VARIABLE EXPONENTIAL SUMS, I

نویسنده

  • HUI JUNE ZHU
چکیده

For a polynomial f(x) in (Zp∩Q)[x] of degree d ≥ 3 let L(f⊗Fp;T ) be the L function of the exponential sum of f mod p. Let NP(f⊗Fp) denote the Newton polygon of L(f⊗Fp;T ). Let HP(Ad) denote the Hodge polygon of Ad, which is the lower convex hull in R2 of the points (n, n(n+1) 2d ) for 0 ≤ n ≤ d−1. Let Ad be the space of degree-d monic polynomials parameterized by their coefficients. Let GNP(A;Fp) := inff∈Ad(Fp) NP(f) be the lowest Newton polygon over Fp if exists. We prove that for p large enough GNP(A;Fp) exists and we give an explicit formula for it. We prove that there is a Zariski dense open subset U defined over Q in Ad such that for f ∈ U(Q) and for p large enough we have NP(f ⊗ Fp) = GNP(A;Fp); furthermore, as p goes to infinity their limit exists and is equal to HP(Ad). Finally we prove analogous results for the space of polynomials f(x) = xd + ax with one parameter. In particular, for any nonzero a ∈ Q we show that limp→∞ NP((xd + ax)⊗ Fp) = HP(Ad).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

T-ADIC L-FUNCTIONS OF p-ADIC EXPONENTIAL SUMS

The T -adic deformation of p-adic exponential sums is defined. It interpolates all classical p-power order exponential sums over a finite field. Its generating L-function is a T -adic entire function. We give a lower bound for its T -adic Newton polygon and show that the lower bound is often sharp. We also study the variation of this L-function in an algebraic family, in particular, the T -adic...

متن کامل

T-adic Exponential Sums over Finite Fields

T -adic exponential sums associated to a Laurent polynomial f are introduced. They interpolate all classical p-power order exponential sums associated to f . The Hodge bound for the Newton polygon of L-functions of T -adic exponential sums is established. This bound enables us to determine, for all m, the Newton polygons of Lfunctions of p-power order exponential sums associated to an f which i...

متن کامل

HODGE-STICKELBERGER POLYGONS FOR L-FUNCTIONS OF EXPONENTIAL SUMS OF P (x)

Let Fq be a finite field of cardinality q and characteristic p. Let P (x) be any one-variable Laurent polynomial over Fq of degree (d1, d2) respectively and p d1d2. For any fixed s ≥ 1 coprime to p, we prove that the q-adic Newton polygon of the L-functions of exponential sums of P (xs) has a tight lower bound which we call HodgeStickelberger polygon, depending only on the d1, d2, s and the res...

متن کامل

L Functions of Exponential Sums over One Dimensional Affinoids, I: Newton over Hodge

This paper studies p-adic theory for exponential sums over one dimensional affinoids. A method is presented to compute their L functions. Let p be a prime and let Fp be the algebraic closure of the finite field of p elements. Let f(x) be any one variable rational function over Fp with l poles of orders d1, . . . , dl. Suppose p is coprime to dj for every j. We prove that there exists a Hodge po...

متن کامل

Hodge-stickelberger Polygons for L-functions of Exponential Sums

Let Fq be a finite field of cardinality q and characteristic p. Let P (x) be any one-variable Laurent polynomial over Fq of degree (d1, d2) respectively and p d1d2. For any fixed s ≥ 1 coprime to p, we prove that the q-adic Newton polygon of the L-functions of exponential sums of P (xs) has a tight lower bound which we call Hodge-Stickelberger polygon, depending only on the d1, d2, s and the re...

متن کامل

L-functions of Exponential Sums over One-dimensional Affinoids: Newton over Hodge

This paper proves a sharp lower bound for Newton polygons of L-functions of exponential sums of one-variable rational functions. Let p be a prime and let Fp be the algebraic closure of the finite field of p elements. Let f(x) be any one-variable rational function over Fp with l poles of orders d1, . . . , dl. Suppose p is coprime to d1 · · · dl. We prove that there exists a tight lower bound wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003